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Abstract

We present a hybrid method for the evaluation of transient elastic-wave propagation in a multilayered solid, integrating

reverberation matrix method with the theory of generalized rays. Adopting reverberation matrix formulation,

Laplace–Fourier domain solutions of elastic waves in the multilayered solid are expanded into the sum of a series of

generalized-ray group integrals. Each generalized-ray group integral containing Kth power of reverberation matrix R

represents the set of K-times reflections and refractions of source waves arriving at receivers in the multilayered solid,

which was computed by fast inverse Laplace transform (FILT) and fast Fourier transform (FFT) algorithms. However, the

calculation burden and low precision of FILT–FFT algorithm limit the application of reverberation matrix method. In this

paper, we expand each of generalized-ray group integrals into the sum of a series of generalized-ray integrals, each of which

is accurately evaluated by Cagniard–De Hoop method in the theory of generalized ray. The numerical examples

demonstrate that the proposed method makes it possible to calculate the early-time transient response in the complex

multilayered-solid configuration efficiently.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Transient elastic-wave propagation in a multilayered medium plays an important role in the fields of
seismology, ocean acoustics, and non-destructive evaluation [1]. Extensive literatures have developed
systematic methodology to evaluate the wave propagation in the multilayered solid. One of the most
important matrix formulations is transfer matrix method developed first by Thomson [2] and then furthered
by Haskell [3]. The simple configuration and efficient computational ability facilitate its wide application in
many research fields. Stiffness matrix method [4,5] and global matrix method [6] have been proposed to resolve
the inherent computational instability for large product of frequency and thickness in transfer matrix method.
The stiffness matrix method utilizes the stiffness matrix of each sublayer in a recursive algorithm to obtain a
stack stiffness matrix for the multilayered medium. The global matrix method involves a global banded matrix
whose size grows with the number of the sublayers.
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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Spencer [7] proposed the method of generalized rays to evaluate the transient wave propagation in the
multilayered solid, which was originally developed for geophysical applications. In the theory of
generalized rays, elastic waves propagating along various ray paths because of multiple reflections and
refractions are expressed as a series of generalized-ray integrals, each of which can be evaluated accurately
by Cagniard–De Hoop method [8]. Since the transient response of one generalized ray is exact up to the
arrival time of the next generalized ray, only a finite number of generalized rays will be involved in the
early-time solution. Because the number of generalized-ray integrals increases remarkably as the increase of
the observation duration and the number of sublayers, the method of generalized ray is only most effective in
the evaluation of the generalized rays that arrive early at a receiver in the simple multilayered-solid
configuration.

Lee [9] and Ma [10,11] formulated a system of equations with a coefficient matrix for the investigation of the
transient waves in a layered solid. They rearranged the coefficient matrix in the special form consisting of the
diagonal, lower, and upper triangular parts and then expanded the inversion of the coefficient matrix into a
power series, which correspond to the finite wave groups involving the multiple reflected or refracted
waves with the same times of reflections or refractions. Su et al. presented another matrix formulation
method—the reverberation matrix method, to investigate the transient elastic waves in isotropic and
transversely layered solid [12,13], which was originally developed to investigate the transient elastic waves in
frames [14]. Considering the local scattering relations at interfaces and the transfer relations in the sublayer, a
reverberation matrix is introduced to formulate a system of equations. According to the times of reflections
and refractions of generalized rays at interfaces, the system of equations in Laplace–Fourier domain is
automatically represented as a series of generalized-ray group integrals. Each generalized-ray group
integral containing Kth power of reverberation matrix R represents the set of K times reflections and
refractions of source waves arriving at receivers in the multilayered solid, which is very suitable to automatic
computer programming compared with the theory of generalized rays. However, at present, generalized-ray
group integrals are numerically evaluated by fast inverse Laplace transform (FILT) and fast
Fourier transform (FFT) [12,13]. With the larger calculation burden and the lower computation precision,
FILT–FFT algorithm is difficult to accurately confirm the arrival time of elastic waves, which makes it
impossible to truncate the generalized-ray group integrals accurately. Furthermore, for the long-time
responses, the FILT–FFT results will trend unstable, which limits the wide application of reverberation matrix
method [15].

In order to calculate the generalized-ray group integrals efficiently, we build a clear connection between the
generalized-ray group integrals and the generalized-ray integrals in this paper. Extracting phase functions
from reverberation matrix and receiver matrix, each of generalized-ray group integrals can be further
expanded into the sum of a series of the generalized-ray integrals, which can be accurately evaluated by
Cagniard–De Hoop scheme in the theory of generalized rays. First, we briefly introduce reverberation matrix
formulation for the evaluation of elastic-wave propagation in the multilayered solid. Second, we present an
expansion method of the generalized-ray group integrals into the generalized-ray integrals. Lastly, we show
two examples to validate the efficiency of the proposed method.

2. Reverberation matrix formulation

To simplify the analysis, we only consider in-plane wave propagation in an isotropic multilayered semi-
infinite solid. In the multilayered solid containing (N�1) sublayers overlaying on a semi-infinite solid shown in
Fig. 1, the interfaces between sublayers are expressed by capital letters I, J,y . Each sublayer is represented by
its interfaces, for example sublayer IJ, sublayer JK,y . As shown in Fig. 2, two local Cartesian coordinate
systems (x, y)IJ and (x, y)JI are constructed at two interfaces of sublayer IJ, respectively. The thickness of the
sublayer is represented by hIJ.

The one-side Laplace transform with respect to time t and the double-side Laplace transform with respect to
the spatial coordinate x are defined as

f̂ ðZ; y; pÞ ¼
Z 1
�1

e�pZx

Z 1
0

f ðx; y; tÞe�pt dtdx. (1)
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Fig. 1. (N�1) sublayers overlaying on a semi-infinite solid.
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In the local Cartesian coordinate system (x, y)IJ, the transformed wave equations associated with displacement

potentials ĵIJ and ĉ
IJ

are denoted as

@2ĵIJ

@y2
� ðplIJ

1 Þ
2ĵIJ
¼ 0, (2)

@2ĉ
IJ

@y2
� ðplIJ

2 Þ
2ĉ

IJ
¼ 0, (3)

where

lIJ
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcIJ Þ

�2
� Z2

q
; lIJ

2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCIJÞ

�2
� Z2

q
.

cIJ and CIJ are velocities of P and S waves of sublayer IJ, respectively. Correspondingly, the transformed

displacement vector Û
IJ
ðZ; yIJ ; pÞ ¼ fûIJ

x ; û
IJ
y g

T is expressed as

Û
IJ
ðZ; yIJ ; pÞ ¼ pAIJ

u â
IJ
þ pDIJ

u d̂
IJ
, (4)

and the transformed stress vector F̂
IJ
ðZ; yIJ ; pÞ ¼ ft̂IJ

yx; t̂
IJ
yyg

T,

F̂
IJ
ðZ; yIJ ; pÞ ¼ mp2AIJ

f â
IJ
þ mp2DIJ

f d̂
IJ
, (5)

where âIJ
¼ faIJ

1 ; a
IJ
2 g

T and d̂
IJ
¼ fdIJ

1 ; d
IJ
2 g

T are unknown vectors, which represent wave–amplitude vectors of
arriving and departing waves with respect to interface I in the local coordinate system ðx; yÞIJ , respectively. AIJ

u

and DIJ
u are phase-related receiver matrixes for displacements corresponding to arriving and departing waves

in the local coordinate system ðx; yÞIJ , respectively, which are denoted as the product of the receiver matrixes
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Ā
IJ

u and D̄
IJ

u , and phase matrixes AIJ and DIJ

AIJ
u ¼ Ā

IJ

u AIJ
¼

Z gIJ
2

gIJ
1 �Z

" #
epgIJ

1
yIJ

0

0 epgIJ
2

yIJ

" #
, (6a)

DIJ
u ¼ D̄

IJ

u DIJ ¼
Z �gIJ

2

�gIJ
1 �Z

" #
e�pgIJ

1
yIJ

0

0 e�pgIJ
2

yIJ

" #
. (6b)

AIJ
f and DIJ

f are phase-related receiver matrixes for stresses corresponding to arriving and departing waves in
the local coordinate system ðx; yÞIJ , respectively, which are expressed as

AIJ
f ¼ Ā

IJ

f AIJ
¼

2ZgIJ
1 ðgIJ

2 Þ
2
� Z2

ðgIJ
2 Þ

2
� Z2 �2ZgIJ

2

" #
epgIJ

1
yIJ

0

0 epgIJ
2

yIJ

" #
, (7a)

DIJ
f ¼ D̄

IJ

f DIJ ¼
�2ZgIJ

1 ðgIJ
2 Þ

2
� Z2

ðgIJ
2 Þ

2
� Z2 2ZgIJ

2

" #
e�pgIJ

1
yIJ

0

0 e�pgIJ
2

yIJ

" #
. (7b)

In order to simplify the expressions in the following analysis, we arrange g1, g2, h, and y of all sublayers in the
following sequence:

fg1; g2; . . . ; g2N�3; g2N�2g ¼ fg
12
1 ; g

12
2 ; . . . ; g

ðN�1ÞN
1 ; gðN�1ÞN2 g, (8a)

fh1; h2; . . . ; h2N�3; h2N�2g ¼ fh
12; h12; . . . ; hðN�1ÞN ; hðN�1ÞNg, (8b)

fy1; y2; . . . ; y2N�3; y2N�2g ¼ fy
12; y12; . . . ; yðN�1ÞN ; yðN�1ÞNg. (8c)

We define the arriving wave amplitude vector aJ and the departing wave amplitude vector dJ of interface J

as

aJ ¼ fa
JðJ�1Þ
1 ; aJðJ�1Þ

2 ; aJðJþ1Þ
1 ; aJðJþ1Þ

2 gT, (9a)

dJ ¼ fd
JðJ�1Þ
1 ; dJðJ�1Þ

2 ; dJðJþ1Þ
1 ; dJðJþ1Þ

2 gT. (9b)

For the free surface, wave amplitude vectors will be revised as

a1 ¼ fa12
1 ; a

12
2 g

T, (10a)

d1 ¼ fd12
1 ; d

12
2 g

T. (10b)

The application of the boundary conditions yields the scattering relation at interface J

dJ ¼ SJaJ þ sJ , (11)

where SJ ¼ �ðDJ Þ
�1AJ and sJ ¼ ðDJÞ

�1FJðpÞ=p2 are the scattering matrix and the source matrix of interface J,
respectively. FJðpÞ is the external force vector of interface J. With the definition of the global arriving and
departing wave amplitude vectors a ¼ ffa1gT; fa2gT; . . . ; faNgTgT and d ¼ ffd1gT; fd2gT; . . . ; fdNgTgT, the global
scattering relation can be written in the following form

d ¼ Saþ s, (12)
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where

S ¼

S1

S2

. .
.

SN

2
66664

3
77775 and s ¼

s1

s2

. .
.

sN

2
66664

3
77775

are the global scattering matrix and the global source matrix, respectively.
Since both vectors a and d are unknown quantities, we need an additional equation related to a and d.

A wave arriving at interface I in the local coordinate (x, y)IJ, is also considered as the wave departing from
interface J of the same sublayer in the local coordinate (x, y)IJ, which yields the other relation between the
global arriving and departing wave amplitude vectors

a ¼ PHd, (13)

where the phase matrix P is a ð4N � 2Þ � ð4N � 2Þ diagonal matrix whose diagonal values are e�pg1h1 ,�e�pg2h2 ,
e�pg1h1 , �e�pg2h2 ; . . . ; e�pg2N�3h2N�3 ,�e�pg2N�2h2N�2 ; e�pg2N�3h2N�3 ,�e�pg2N�2h2N�2 , 0, 0. H is a ð4N � 2Þ � ð4N � 2Þ
matrix composed of only one element whose value is one in each line and each row and others are all zero. For
example, in vector d, if dJK

i and dKJ
i are in the positions p and q, respectively, then the elements Hpq and Hqp in

the matrix H have the same value one.
Once the vectors d and a are known from Eqs. (12) and (13), the complete list of displacements in Laplace

domain will be expressed as

Ūðx; y; pÞ ¼
p2

2pi

Z Z1þi1

Z1�i1
ðAuPHþDuÞ½I� R��1sepZxd Z, (14)

where R ¼ SPH is the reverberation matrix. Au and Du are the global phase-related receiver matrixes for
displacements corresponding to arriving and departing waves, respectively, which can be denoted as the
product of the global receiver matrix and the global phase matrix,

Au ¼ ĀuA, (15a)

Du ¼ D̄uD, (15b)

where Āu and D̄u are the global receiver matrixes. The global phase matrix A corresponding to arriving waves
is a ð4N � 2Þ � ð4N � 2Þ diagonal matrix whose diagonal values are epg1y1 , epg2y2 , epg1y1 , epg2y2 ; . . . ; epg2N�3y2N�3 ,
epg2N�2y2N�2 , epg2N�3y2N�3 , epg2N�2y2N�2 , 0, 0. The global phase matrix D corresponding to departing waves is a
ð4N � 2Þ � ð4N � 2Þ diagonal matrix whose diagonal values are e�pg1y1 , e�pg2y2 , e�pg1y1 , e�pg2y2 ; . . . ; e�pg2N�3y2N�3 ,
e�pg2N�2y2N�2 , e�pg2N�3y2N�3 , e�pg2N�2y2N�2 , 0, 0.

The replacement of the inverse of the matrix I�R by a power series [I+R+R2+?+Rn+?] through the
Neumann-expansion in Eq. (14) yields

Ūðx; y; pÞ ¼
p2

2pi

X1
n¼0

Z bþi1

b�i1
ðAuPHþDuÞR

nsepZx dZ. (16)

Here, each term in the above integral containing Rn are defined as a generalized-ray group, which represents
the set of n times reflections and refractions of the source waves arriving at receivers at (x, y). The generalized-
ray group with respect to n ¼ 0 shows the waves from sources to the receivers directly, which are called as
source waves. Here, every generalized-ray group contains a series of generalized rays, and the number of
generalized rays increases exponentially with the increase of the number of sublayers and the reflection or
refraction times.

The transient response of displacements can be denoted by the inverse Laplace transform of Eq. (16)

Uðx; y; tÞ ¼ �
1

4p2
X1
n¼0

Z þi1
�i1

Z bþi1

b�i1
p2Gne

pðZxþtÞ dZdp, (17)
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where Gnðp; ZÞ ¼ ðAuPHþDuÞR
ns. Introducing the substitution Z ¼ x/p in Eq. (17), Each of generalized-ray

group integrals can be denoted as

Unðx; y; tÞ ¼ �
1

4p2

Z þi1
�i1

Z bþi1

b�i1
pGnðp; x=pÞexxþpt dxdp. (18)

Considering finite x range [�X/2, X/2] with K1 sampling points and finite observation time range [0, T] with
M1 sampling points, Eq. (18) was truncated, discretized, and numerically evaluated by FILT and FFT [12,13],
which is expressed as

UnðlX=K1; y; jT=M1Þ ¼
eðbjT=M1Þþipl

TX

Xm¼M1�1

m¼0

Xk¼K1�1

k¼0

Fnðm; kÞW
mj
1 W kl

2 , (19)

where l ¼ 0; 1; . . . ;K1 � 1 and j ¼ 0; 1; . . . ;M1 � 1.W 1 ¼ e�2pi=M1 , W 2 ¼ e�2pi=K1 .

Fnðm; kÞ ¼ pmGnðpm; xk=pmÞ,

xk ¼ �2ipðk � K1=2Þ=X ,

pm ¼
b� 2pim=T ; m ¼ 0; 1; . . . ;M1=2

b� 2piðm�M1Þ=T ; m ¼M1=2; . . . ;M1 � 1

(
.

However, FILT–FFT algorithm shows high frequency oscillations near the discontinuities, known as Gibbs
oscillations, which lead to amplitude errors that are unacceptable for the arrival-time determination of the
generalized-ray groups. If no accurate arrival time of the generalized-ray groups, the Neumann-expansion
truncation of [I�R]�1 is difficult to be determined in finite observation time range [0, T].

3. Expansion of generalized-ray group integrals

Each of generalized-ray groups contains a series of generalized rays with different arrival time. In order to
determine the accurate arrival time of generalized-ray groups, each generalized-ray group integral must be
expanded into the sum of a series of generalized rays, whose arrival time and responses can be accurately
evaluated by Cagniard–De Hoop method. Each of generalized-ray integrals is constructed by assembling the
source function, reflection and refraction coefficients, the receiver function, and the phase function. Except for
the phase function, each of generalized-ray group integrals in Eq. (16) also has the source matrix S, reflection
and refraction matrix (reverberation matrix) R, and receiver matrixes AuP and Du, which is similar with the
generalized-ray integral. In order to expand a generalized-ray group integral into the sum of the generalized-
ray integrals, the phase function epgðZÞ corresponding to the different generalized ray must be extracted from
the generalized-ray group integrals.

Different from the generalized-ray integral, the phase function epgðZÞ in the generalized-ray group integral are
involved in the receiver matrixes AuP and Du, and reverberation matrix R. Firstly, we extract the phase
function from the receiver matrix AuP. For general case that there is only one receiver in each finite sublayer
with a distance of yj from the top surface of each sublayer, extraction of the phase function from AuP yields

AuP ¼
X2N�2

j¼1

ĀuAjPj e
ptaj , (20)

where Aj is a ð4N � 2Þ � ð4N � 2Þ diagonal matrix with two nonzero elements whose values are ones at (2j�1)
and (2j+1) for odd j, and (2j�2) and (2j) for even j. Pj is a ð4N � 2Þ � ð4N � 2Þ diagonal matrix with only two
nonzero elements whose values are ones at (2j�1) and (2j+1) for odd j, and negative ones at (2j�2) and (2j)
for even j. taj ¼ gjðyj � hjÞ. If we only consider a receiver in Kth sublayer, Eq. (20) will be simplified into

AuP ¼
X2K

j¼2K�1

ĀuAjPj e
ptaj . (21)
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Similarly, Du can be denoted as

Du ¼
X2N�2

j¼1

D̄uDj e
�ptdj , (22)

where Dj is a ð4N � 2Þ � ð4N � 2Þ diagonal matrix with two nonzero elements whose values are ones at (2j�1)
and (2j+1) for odd j, and (2j�2) and (2j) for even j. tdj ¼ gjyj .

Secondly, the nth power of reverberation matrix Rn can be denoted as

Rn ¼
X

qþrþ���þv¼n

P̄ðn : q; r; . . . ; vÞe�ptR , (23)

where P̄ðn; q; r; . . . ; vÞ is the sum of the set taking q matrixes R1 ¼ SP1H, r matrixes R2 ¼ SP2H; . . . ; and v

matrixes R2ðN�1Þ ¼ SP2ðN�1ÞH to multiply in the sequence of permutation with repetition. For example,
considering two matrixes R1 and one matrix R2, P̄ð3; 2; 1Þ equals R1R1R2 þ R1R2R1 þ R2R1R1.
tR ¼ qg1h1 þ rg2h2 þ � � � þ vg2ðN�1Þh2ðN�1Þ.

Substitution of Eqs. (20), (22), and (23) into Eq. (16) results in the sum of a series of the generalized rays

Ūðx; y; pÞ ¼
X1
n¼0

X2N�2

j¼1

X
qþrþ���þv¼n

1

2pi

Z bþi1

b�i1
ðGaFðpÞe

�pt1 þGdFðpÞe
�pt2 ÞdZ, (24)

where Ga ¼ A0uAjPjHP̄ðn; q; r; . . . ; vÞD�1, Gd ¼ D0uDjP̄ðn; q; r; . . . ; vÞD
�1, t1 ¼ �Zxþ taj þ tR, and t2 ¼ �Zxþ

tdj þ tR. The canonical form of each term in Eq. (24) can be denoted as

ĒðpÞ ¼

Z Z1þi1

Z1�i1
GðZÞe�pt dZ

FðpÞ

2pi
. (25)

The inverse Laplace transform of the integral in Eq. (25) can be conducted by Cagniard–De Hoop method,
which is shown in detail in the textbooks of Achenbach [16] and Pao [8]. The Cagniard–De Hoop scheme
consists in deforming the path on integration in the Z plane such that the integrals can be recognized as
the Laplace transform of certain explicit functions of time. The inverse Laplace transform of the integral in
Eq. (25) is shown as

EðtÞ ¼
1

p
Im GðZÞ

qZ
qt

Hðt� taÞ

� �
Z¼Z1

� L�1fFðpÞg, (26)

where H(U) is the Heaviside function, L�1 the inverse Laplace transform, and * denotes the convolution of
two functions with respect to time t. The deformed path of integration Z ¼ Z1 is given by the following
equation:

t ¼ �Zxþ t�j þ tR, (27)

where t�j ¼ taj for arriving waves and t�j ¼ tdj for departing waves in Eq. (24). The arrival time ta of each
generalized ray is determined from the global stationary value of t, which is determined by the condition

@t

@Z
¼ 0. (28)

If the arrival time tM�1
a of the (M�1)th generalized-ray group is smaller than computational time length T and

the arrival time tM
a of the Mth generalized-ray group is greater than computational time length T, we only

consider the sum of the first (M�1) terms of the Neumann-expansion of [I�R]�1 in the finite time range [0, T].

4. Numerical results and discussion

We show two examples to verify the efficiency of the proposed method. The first is a sublayer overlaying a
semi-infinite solid. The thickness of the sublayer is h1, Lame constants l1 ¼ m1, and the density r1. The Lame
constants of the semi-infinite solid are l2 ¼ m2 ¼ 2l1 and the density r2 ¼ r1. A vertical line source
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Fig. 3. The transient displacements of receiver A for the first generalized-ray group: (a) the horizontal displacement and (b) the vertical

displacement.
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�F 0dðtÞdðxÞdðyÞ is acted on the free surface of the sublayer, and receivers A and B are also set at the free
surface of the sublayer with the distance of 2h and 3h from the source, respectively.

Fig. 3 shows the transient displacements of receiver A for the first generalized-ray group calculated by
Cagniard–De Hoop and FILT–FFT algorithms. Figs. 3(a) and (b) represent the horizontal and vertical
displacements, respectively. In the following figures, the normalized displacements um1h1=F0 and the
normalized time t ¼ C1t=h are introduced. The first generalized-ray group includes the direct P wave, the
direct S wave, and the Rayleigh wave, without any reflection or refraction from any interface of
the multilayered solid. It is shown clearly that the arrival time of P wave, S wave, and Rayleigh
wave calculated by Cagniard–De Hoop algorithm are t ¼ 2=

ffiffiffi
3
p

, 2, and 2.175, respectively, which are the
same as results of Forrestal [17]. The horizontal displacement vanishes after the transverse wave has arrived,
except for a d-function propagating with the velocity of Rayleigh waves. The vertical displacement shows
an infinite discontinuity propagating with the velocity of Rayleigh wave. Furthermore, the arrivals of
P and S waves correspond to non-differentiability of the displacements. These non-differentiability and
discontinuity of the displacements yield the high frequency oscillations of the results of FILT–FFT algorithm,
which make it difficult to identify the arrival time of P wave, S wave, and Rayleigh wave for FILT–FFT
algorithm.

The transient displacements of receiver A for the second generalized-ray group are shown in Fig. 4. The
second generalized-ray group contains Pp, Ps, Sp, and Ss waves, which correspond to waves arriving at
receiver A after reflection of source wave by the bottom interface of the finite sublayer. The arrival time of Pp
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Fig. 4. The transient displacements of receiver A for the second generalized-ray group: (a) the horizontal displacement and (b) the vertical

displacement.
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wave is t ¼ 2
ffiffiffi
2
p

=
ffiffiffi
3
p

, the arrival time of Ss wave t ¼ 2
ffiffiffi
2
p

and the arrival time of Ps and Sp waves t � 2:150.
Because of no influence of Rayleigh waves, the results of FILT–FFT algorithm is coincide with those of
Cagniard–De Hoop algorithm, except for the small high-frequency oscillation near the arrival of waves.

According to computational time length T ¼ 4 and the calculated arrival time of generalized-ray group,
Neumann-expansion in Eq. (16) are truncated to be n ¼ 6. The transient displacements of receiver
A corresponding to the sum of the first seven ray groups are shown in Fig. 5. Because of free-surface reflection
of the finite sublayer, the second and third generalized-ray groups arrive simultaneously, and the fourth and
the fifth generalized-ray groups, the sixth and seventh generalized-ray groups as well. Compared with Figs. 3
and 4, the first three generalized-ray groups mainly contribute to the transient responses of receiver A.

In order to compare the calculation efficiency of Cagniard–De Hoop and FILT–FFT algorithms, time
consumption for the calculation of the first seven generalized-ray groups of receiver A are listed in Table 1,
with 512 sampling points in the finite time range [0, T]. For each generalized-ray group, it is shown that the
time consumption of Cagniard–De Hoop algorithm is smaller than one fourteenth of that of FILT–FFT
algorithm, which means that the proposed method is more efficient.

Fig. 6 shows the transient displacements of receiver B for the second generalized-ray group. For the first
generalized-ray group, transient responses of receiver B are similar with those of receiver A, except for the
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Fig. 5. The transient displacements of receiver A for the sum of the first seven generalized-ray groups: (a) the horizontal displacement and

(b) the vertical displacement.

Table 1

Time consumption for the calculation of the generalized-ray groups of receiver A.

Cagniard-De Hoop (s) FILT–FFT (s)

The first generalized-ray group 19.27 692.80

The second generalized-ray group 39.83 696.12

The third generalized-ray group 43.43 699.16

The fourth generalized-ray group 35.26 703.21

The fifth generalized-ray group 21.87 705.21

The sixth generalized-ray group 10.96 706.20

The seventh generalized-ray group 5.20 707.92
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arrival time of direct waves. Because the semi-infinite medium has higher wave velocities, the generalized rays
may be refracted along the bottom interface of the finite sublayer. Fig. 6 shows clearly that three refracted
waves PP*p, SP*p, and SS*s arrive at t � 2:041, 2.587, 3.536, respectively.
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Fig. 6. The transient displacements of receiver B for the second generalized-ray group: (a) the horizontal displacement and (b) the vertical

displacement.
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The second example is four sublayers of the same thickness h1 and density r overlaying a semi-infinite solid
of density r. The first and third sublayers, and the semi-infinite solid have the same elastic constants with
l1 ¼ m1, and Lame constants of the second and fourth sublayers double that of the first sublayer. The same
source as the first example is applied on the free surface of the first sublayer. Receiver C is set in the semi-
infinite solid with the horizontal distance of 5h from the source and a vertical distance of 0:5h from the top
surface of the semi-infinite solid.

Fig. 7 shows the transient displacements of receiver C. Because receiver C is in the infinite solid, the waves
from the source will arrive at receiver C directly after four times interface interaction (n ¼ 4) so that the first
four generalized-ray groups make no contribution to the response of receiver C. Considering this
source–receiver configuration, only generalized-ray groups corresponding to the even of n contribute to the
response of receiver C. The fifth (n ¼ 4), seventh (n ¼ 6), ninth (n ¼ 8) generalized-ray groups and their sum
are shown in Figs. 7(a) and (c), and their sums in Figs. 7(b) and (d). The fifth, seventh and ninth generalized-
ray groups, which arrive at t � 3:341:3:859; 4:894, contains 32, 256, and 1152 generalized rays, respectively.
With the increase of the reflection or refraction times, the number of the generalized rays contained in the
generalized-ray group increases exponentially, which leads to the remarkable increase of the calculation-time
consumption shown in Table 2. For the eleventh generalized-ray group, the insufficiency of the computer
memory yields the failure of the calculation for Cagniard–De Hoop algorithm.
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Fig. 7. The transient displacements of receiver C: (a) the fifth, seventh, and ninth generalized-ray groups for the horizontal displacement,

(b) sum of the first nine generalized-ray groups for the horizontal displacement, (c) the fifth, seventh, and ninth generalized-ray groups for

the vertical displacement, and (d) sum of the first nine generalized-ray groups for the vertical displacement.

Table 2

Time consumption for the calculation of the generalized-ray groups of receiver C.

Cagniard-De Hoop (s) FILT–FFT (s)

The fifth generalized-ray group 77.5 1474.5

The seventh generalized-ray group 953.6 1484.7

The ninth generalized-ray group 8243.8 1555.4
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5. Conclusions

Combining reverberation matrix formulation with the theory of generalized rays, the hybrid method has
been presented for the evaluation of the transient wave propagation in the multilayered solid. The
combination of reverberation matrix formulation and Neumann-expansion expands the elastic waves in the
multilayered solid into the sum of a series of the generalized-ray group integrals, which is suitable for the
computer programming. Generalized-ray group integrals were evaluated numerically by FILT–FFT
algorithm, which has the calculation burden and low precision. In order to calculate generalized-ray group
integrals efficiently, extracting the phase function from the receiver matrixes and reverberation matrix yields a
clear connection between the generalized-ray group integrals and the generalized-ray integrals, which can be
accurately evaluated by Cagniard–De Hoop scheme in the theory of generalized rays. The numerical examples
demonstrate that taking full advantage of automatic formulation of reflection or refraction coefficients of
reverberation matrix method, and fast-high-precise calculation of generalized-ray method, this proposed
method can calculate the arrival time and transient responses of the first several generalized-ray groups
accurately in the complex multilayered-solid configuration with the lower time consumption, compared with
FILT–FFT algorithm. However, with the times of reflection or refraction from interfaces, the number of
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generalized ray contained in the generalized-ray group will increase exponentially so that the insufficiency of
the computer memory results in the failure of the long-time response calculation. Therefore, this proposed
method will limit to the fast-high-precision analysis of early-time response in the complex multilayered-solid
configuration.
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